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Editorial 
According to the GLOBOCAN 2012 estimates, about 14.1 million cancer cases and 8.2 million 

cancer deaths are estimated to have occurred in 2012; of these, 57% of the cases and 65% of the 
deaths occurred in the economically developing world [1]. Knowledge of heterogeneity and 
cancer stem cell facilitates that cancer is not cured by chemotherapeutic agent alone. Immune 
surveillance is recent notion that nascent premalignant cells are destroyed by the immune system 
before tumor formation can occur. Disruptive technologies have continued to advance immune 
therapy at previously inconceivable rates. As global views of cancer behavior against immune 
system have emerged, the magnitude of its complexity has become apparently manifest. Although 
there has been a dramatic progress in chemotherapy for cancer, cancer research of immune system 
have experienced considerable advancements over the last three decades. The concept of cancer 
immune therapies follows logically from the investigation of immune intolerance or suppression 
against cancer. A review of clinical trail results to date, primarily in patients with advanced cancers 
refractory to conventional treatments, indicates that these therapies can be applicable to solid cancer 
to elucidates regression or stabilization of cancer tissues. Immune therapy against cancer is not new 
paradigm with enormous potential. Immunotherapy was introduced in the treatment of lymphoma 
as FDA approval of rituximab antibodies in 1997 [2]. Not only does tumor-infiltrating T lymphocyte 
[3,4] but also lower lymphocyte count [5], impaired natural killer (NK) cell activity [6] has been 
reported. Recent progress manifests that regulatory T cells (Treg) is closely associated with tumor 
progression by producing TGF-β, interleukin (IL)-10 as well as cytotoxic T lymphocyte-associated 
protein 4 (CTLA-4) [7,8]. Tumor cells can reduce T-cell-mediated recognition by changing Human 
Leucocyte Antigen (HLA) class I expression which present processed tumor antigen to T cell [9]. 
Although this T cell mediated response vary depends on HLA number and complete loss of HLA 
means unable to recognize cancer cell by T lymphocytes, this phenomena activates strong NK 
cell activation. To measure the benefit of immune therapy, investigators of immune check point 
blockade proposed the immune-related response criteria (irRC). Considering of immune therapy 
acts slowly and sometimes results in mixed response, irRC reflects convenient clinical outcome. 
There is little or no controversy about FOXP3+CD4+Treg plays an important role in anti-tumor 
immune system. Tumor infiltrated CD4+Tregs induce anorexic state on CD8+T cells. That is, Treg 
secrete TGF-β and IL-10 to interfere with T cell priming. Increased infiltrated Tregs are associated 
with poor outcome of breast cancer, non-small-cell lung cancer, and hepatocellular carcinoma [10-
12]. 

T Cell Based Immunotherapy
Peptide vaccine

Although few cancer antigens have been identified until now, several clinical investigations were 
performed by using WT1, MUC1, CEA, BRAF, MAGE A3 and BCR-ABL peptide in solid [13,14] 
and hematological [15] cancer. Most of the clinical trials done were concluded “disappointing” 
whereas another respect of immune therapy is immunological response. That is, it is usually difficult 
to elicit significant number of Cytotoxic T Lymphocyte (CTL), clinical outcome as long term stable 
disease is not uncommon in this modality.

Dendritic cell based vaccine (DC)
Not only autologous DC but also artificial antigen have been investigated in preclinical 

and clinical settings [16-19]. Of all the solid cancer investigated, response rate of almost 20% is 
meaningful therapeutic approach [18].

CART
The genetic modification of autologous T cells with Chimeric Antigen Receptors (CARs) 
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represents a breakthrough for gene engineering as a cancer therapy 
for both solid and hematologic malignancies [20,21]. Although one 
of the critically successful way is to identify suitable cancer antigens. 
That is, limited number of cancer antigen presents on the surface 
of cancer whereas most of them are presented on normal tissue. 
Furthermore, changing microenvironment of immunosuppressive 
cancer may elucidate success of CART.

Immune checkpoint blockade
Antitumor immunity is regulated by multiple immune 

suppression mechanism. Cytotoxic T lymphocyte-associated antigen 
4 (CTLA-4) was the first immune checkpoint receptor. Programmed 
cell death protein 1(PD-1/PD-L1) and its ligand is another pathway. 
CTLA-4 acts to regulate immune response early in T-cell activation, 
PD-1 acts primarily to inhibit effector T-cell activity in the effector 
phase within tissue and tumors [22]. Of PD-1/PD-L1antibody, success 
in phase I studies of nivolumab, pembrolizumab and atezolizumab 
may result in enthusiastic paradigm shift for cancer therapy [23-25].

NK/NKT Cell Based Immunotherapy
It has been two decades since NK had discovered by Kiessling et 

al. [26]. Now that human NK cells are defined to lymphocytes that 
express CD3-CD56+, whereas NKT cells are defined CD3+CD56+ 
lymphocytes. NK/NKT cell acts as an intermediary between innate 
and adaptive immune response. Both cells can produce IFN-γ, 
TNF-α and GM-CSF. Furthermore, when both cells encounter cancer 
cells, they can release perforin to disrupt endosomal trafficking and 
granzyme B to induce apoptosis. But in general, it takes several days 
to restore perforin and granzyme B after the first attack by NK/NKT 
cells. Also immunosuppressive factors produced by cancer cells are 
limiting factor of these innate immunity [27]. Though interleukin-2 
(IL-2) activates NK cells and increases NK cell numbers, clinical 
efficiency against malignancy is limited because of its negative aspect 
of immune suppression and adverse events. As β and γ chains of 
IL-2 and IL-15 receptors are shared, it has been acknowledged that 
the signaling pathway of IL-2 and IL-15 have same component. IL-
15 have an advantage of not stimulating Treg like IL-2 and inhibiting 
IL-2 mediated AICD. Kevin et al. revealed that recombinant human 
IL-15 (rhIL-15) simulates NK cell and proliferation in clinical setting 
[28]. Although successful trial of expanded autologous NK cells are 
reported [29], recent advances in NK cells may focus on genetic 
engineering approaches [30]. 	NKT cells play an intermediary role 
bridging innate and acquired immunity. Activation of NKT cells have 
an advantage of maturation of dendritic cell because most advanced 
cancer patients are immunosuppressive status due to tumor produced 
TGF-β. Taniguchi reported that NKT cell therapy result in promising 
outcome [31].

Macrophage Based Immunotherapy
As an essential component of innate immunity, it is little or 

no controversy about role of cancer immunity of macrophage. Gc 
protein, α2protein, can be converted into GcMAF (Gc macrophage 
activating factor) in vivo and in vitro. GcMAF is the most strongest 
natural product to stimulate macrophage. Inui et al. [32] reported 
the efficiency of GcMAF against cancer. Of note, GcMAF stimulates 
macrophage without producing cytokine production. Due to the 
progress of methodology of GcMAF, response rate against solid 
cancer is about 30% (Data not shown).

Coley’s Vaccine
In 1893, a New York surgeon, William Coley noticed tumor 

regression who suffered from erysipelas. Inspired by this finding, 
W. Coley started injecting live Streptococcus pyogenes to his cancer 
patients. This is the first description of cancer immune therapy. As it 
was the age of emerging chemotherapy as well as radiation therapy, 
Coley’s vaccine came to an end after two decades.

Cytokines
IL-2, IFN-α2a, IFN-α2b are cytokines approved by the US FDA 

and/or EMA for limited solid cancer. Their main purpose is to 
stimulate immune system. These cytokines stimulate whole immune 
system, that is non-specific manner, then usually cause adverse 
events. They are generally accompanied with little benefits [33].

Monoclonal Antibody
Immunomodulatory monoclonal antibodies are designed to elicit 

anti-cancer response. This tumor-targeting mAbs aim at i) targeting 
cancer cell surface receptor referring as cell signaling, ii) blocking the 
Tumor Associated Antigen (TAA). But because most cancer patients 
have mutated protein on its surface to which immune system is not 
tolerated. The enthusiasm expected from imatinib mesylate, a kind of 
selective ABL tyrosine kinase inhibitor, seemed to provide powerful 
clinical validation of oncogene addiction principle [34]. In other 
word, conserved genomic view of cancer is closely associated with 
clinical outcome.

PRR Agonists
Pattern Recognition Receptors (PRRs) are evolutionally preserved 

proteins. Combining both toll-like receptors (TLRs) and nucleotide-
binding oligomerization domain containing (NOD)-like receptors 
(NLRs) induces significant CD4+ and CD8+ T cell response to hold 
long term immunity against tumor. TLR2/TLR4 agonist, TLR7 
agonist, NOD2 agonist are approved drug. Of them, TLR2/TLR4 
agonist, Cervarix, is the most prevailing PRRs and acts as vaccine for 
HPV-16 and -18 infection.

Concluding Remarks
Cancer immunotherapy have a miscellaneous history, affluent 

basic research until now and a promising future. In this report, 
current cancer immune therapies are classified by using main target 
of immune reaction. The application of cancer immunotherapy for 
certain types and stage is particularly compelling because the potential 
of immunotherapy for clinical impact is now firmly investigated. 
The integration of new modality into standard clinical practice 
must adapt to rational design of combinations of immunotherapy 
and conventional therapy. When we work together for the sake 
of remarking any types of immune therapy strategies, we have to 
definitely assemble the challenges described here and select immune 
therapy to facilitate immune response.
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