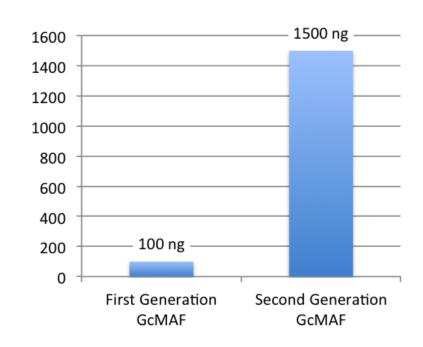
Case Report: A Breast Cancer Patient Treated with GcMAF, Sonodynamic Therapy and Hormone Therapy

TOSHIO INUI^{1, 3}, KAORI MAKITA¹, HIRONA MIURA¹, AKIKO MATSUDA¹, DAISUKE KUCHIIKE^{1, 3}, KENTARO KUBO¹, MARTIN METTE¹, YOSHIO ENDO², YOSHIHIRO UTO³, HITOSHI HORI³, NORIHIRO SAKAMOTO^{1, 4}

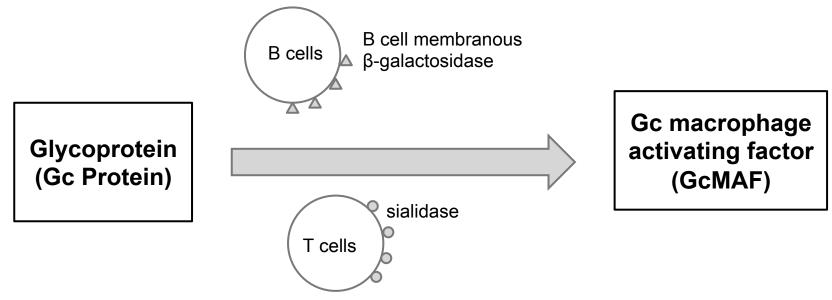
- 1 Saisei Mirai Clinics. 2 Kanazawa University. 3 The University of Tokushima.
- 4 Kobe University.


GcMAF timeline

- 1991 Dr Yamamoto developed GcMAF
- **1992** Dr Yamamoto visited Dr Hori at Tokushima University GcMAF research started at Tokushima University
- 1998 Dr Uto joined Dr Hori's GcMAF research team
- **2002** First research papers published on GcMAF in the journals *Biotherapy* and *Comparative Biochemistry & Physiology*
- **2010** Tokushima University began collaborating with Saisei Mirai to develop Second Generation High Dose GcMAF
- **2011** Second Generation GcMAF produced in our Cell Processing Center (CPC) for patients. Start of clinical use.
- **2013** Two research papers published in *Anticancer Research* by Saisei Mirai & Tokushima University
- 2013 Over 1000 patients treated with Saisei Mirai GcMAF

Comparison between 1st Generation and 2nd Generation GcMAF

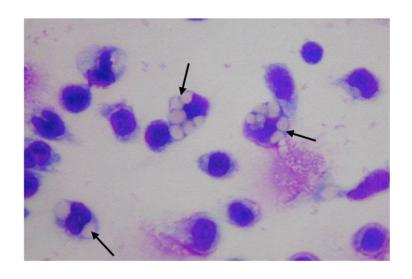
First Generation GcMAF


- Developed by Dr Yamamoto in 1991
- Low concentration (100 ng/0.25 ml, 1 dose)
- Low stability at room temperature
- 25-(OH) Vitamin D3 Affinity Column

Second Generation GcMAF

- Developed by the University of Tokushima and Saisei Mirai in 2011
- High concentration (1500 ng/0.5 ml, 1 dose)
- Significantly higher stability and macrophage activating activity
- New patent pending production process

GcMAF production in vivo

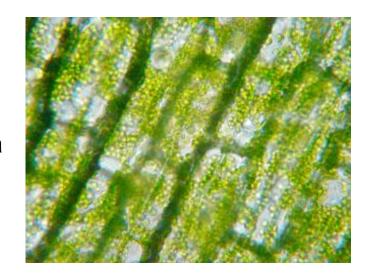

Biological activity of GcMAF

- increased phagocytic activity
- superoxide radical generation
- anti-angiogenic effect
- anti-tumor effect

Conversion of vitamin D3 binding protein (group-specific component) to a macrophage activating factor by the stepwise action of beta-galactosidase of B cells and sialidase of T cells. Yamamoto N, Kumashiro R. J Immunol. 1993 Sep 1;151(5):2794-2802.

Macrophage phagocytic activity assay of 2nd generation GcMAF

- Using mouse macrophages and sheep red blood cells
- Red blood cells (white) are opsonized which marks them for ingestion and destruction by activated macrophages, seen as white cells in the purple areas
- Calculate the Phagocytosis (ingestion)
 Index (PI) to determine the level of activity


Stability of 2nd Generation GcMAF

- 4 °C > 1 year
- 20 °C4 weeks
- 40 °C
 1 week

Sensitizers for SDT

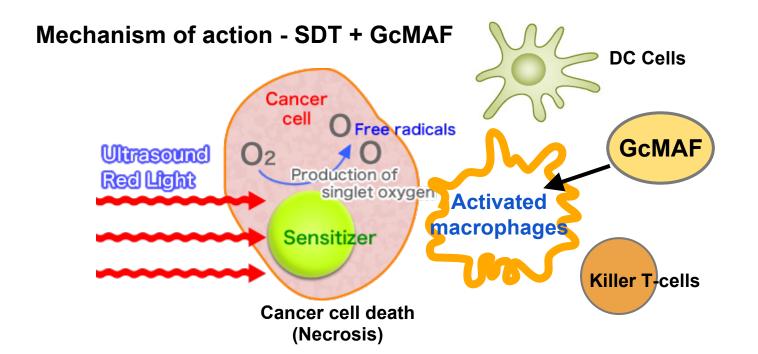
Modified Tin Chlorin e6

- Compound made from chlorophyll a in chlorella
- Sensitive to ultrasound and specific wavelengths of light

Chlorophyll

5-aminolevulinic acid (5-ALA)

- Natural amino acid found in all animals and plants
- Used to visualize cancer tissue in neurosurgical procedures
- Sensitive to ultrasound and specific wavelengths of light



$$H_2N$$
 OH

Mechanism of Sonodynamic Therapy (SDT)

- Ultrasound is physical energy
 - Cavitation
 - Sonoporation

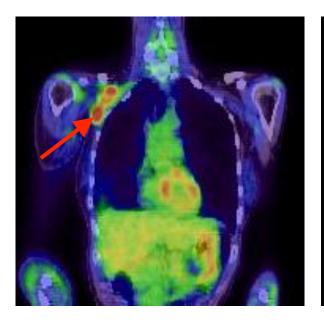
- Sonoluminescence
- Ultrasonic microstreaming
- Energy causes activation of sonosensitizer
- Produces singlet oxygen and free radical oxygen in cancer cells
- Causes coagulative necrosis (cancer cell death)

Sonodynamic Therapy (SDT)

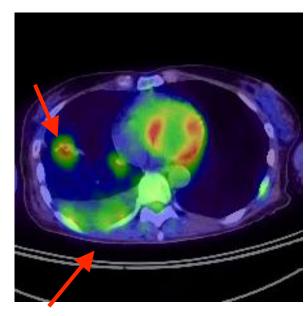
Application of gel

Application of ultrasound to tumor area

Breast cancer patient: Medical history

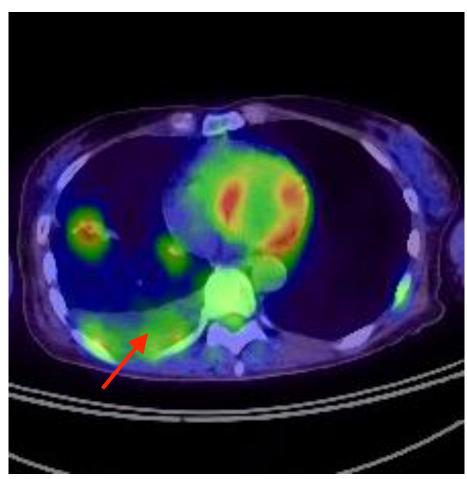

- 55-year-old female with recurrent breast cancer
- Sep 2009 Lumpectomy of left breast tumor with skin invasion
- Patient refused to receive any further standard treatment after the operation
- Oct 2011 Patient noticed right axillary tumor. Currently no treatments being undertaken
- The tumor kept growing and tumor markers were increasing
- Jul 2012 Needle aspiration biopsy was done to confirm the recurrence of the tumor
- Jul 2012 Patient started receiving Hyperthermia (total 24 times with Thermotron RF-8) and i.v. high dose vitamin C (total 10 times)
- Jun 2013 Patient presented in my clinic

Symptoms (at presentation)


- Cough
- Back pain
- Severe swelling of the right arm (edema)

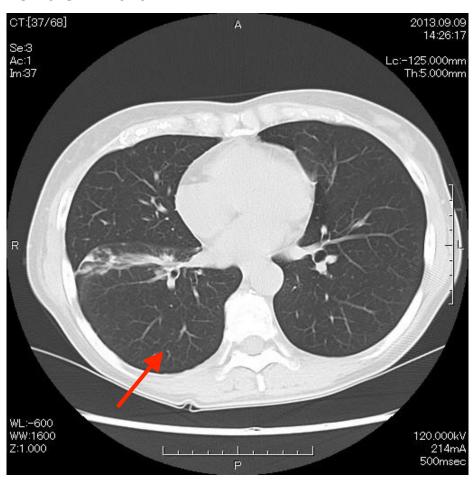
Pathological findings

 Invasive Ductal Carcinoma (IDC), N0 (no nodes are involved), Margin (–), Grade 3, ER+, PR+, Her2+

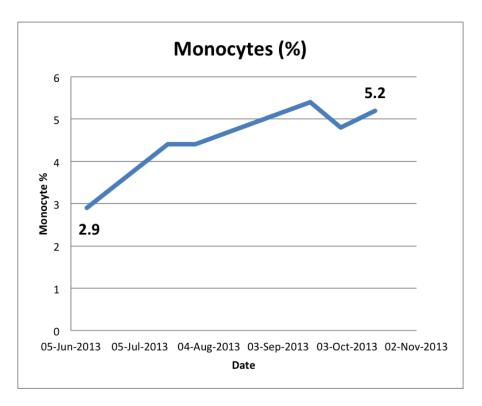


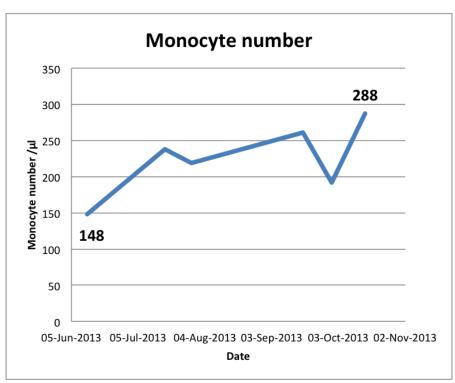
Treatment Overview

- Second Generation High Dose GcMAF
 - 0.5 ml, 2 times weekly (i.m.)
 - Total 21 times
- Sensitizers for SDT
 - Modified Tin Chlorin e6, 25 mg (i.v.)
 - 5-aminolevulinic acid (5-ALA), 10 mg/kg BW (oral)
 - Total 19 treatment days of SDT 12-Jun-2013 to 30-Sep-2013
- Aromatase Inhibitor
 - Aromasin, 25 mg/day (oral)

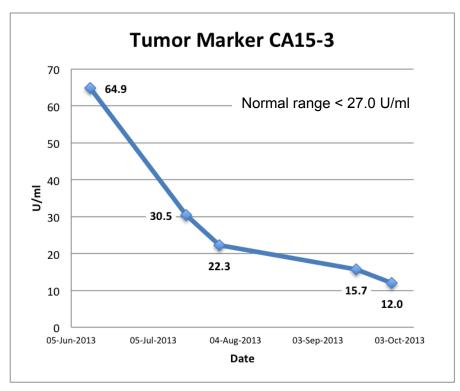

PET CT and CT showing disappearance of lung pleural effusion

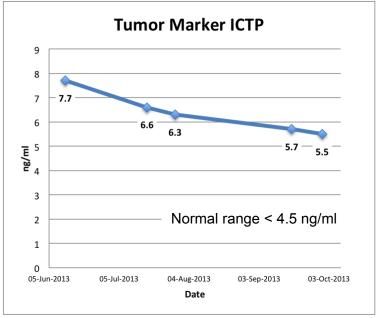
PET CT 6-JUN-2013


Lung pleural effusion and nodular shadow before treatment with SDT.


CT 9-SEP-2013

Lung pleural effusion and nodular shadow disappeared <u>after</u> treatment with SDT.


Change in monocyte percentage and monocyte number during GcMAF therapy



A patient's monocytes will generally rise in the early stages of High Dose GcMAF and indicates a good response to treatment.

Results

- Improvement of symptoms such as cough, back pain and rt. hand edema
- Remarkable improvement of tumor markers
- Decreased size of the axillary tumor
- No serious side effects from the treatments

Conclusion and perspective

- We showed the case report of a terminal breast cancer patient having had good effects from SDT, GcMAF and hormonal therapy
- We are expecting good outcomes from the next PET CT scan
- It suggests SDT and GcMAF can be used with standard treatments to get better outcomes for cancer patients
- We are planning to further refine and improve our protocols with SDT and GcMAF

